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Summary
Background Dementia’s diagnostic protocols are mostly based on standardised neuroimaging data collected in the
Global North from homogeneous samples. In other non-stereotypical samples (participants with diverse admixture,
genetics, demographics, MRI signals, or cultural origins), classifications of disease are difficult due to demographic
and region-specific sample heterogeneities, lower quality scanners, and non-harmonised pipelines.

Methods We implemented a fully automatic computer-vision classifier using deep learning neural networks. A
DenseNet was applied on raw (unpreprocessed) data from 3000 participants (behavioural variant frontotemporal
dementia-bvFTD, Alzheimer’s disease-AD, and healthy controls; both male and female as self-reported by
participants). We tested our results in demographically matched and unmatched samples to discard possible
biases and performed multiple out-of-sample validations.

Findings Robust classification results across all groups were achieved from standardised 3T neuroimaging data from
the Global North, which also generalised to standardised 3T neuroimaging data from Latin America. Moreover,
DenseNet also generalised to non-standardised, routine 1.5T clinical images from Latin America. These
generalisations were robust in samples with heterogenous MRI recordings and were not confounded by
demographics (i.e., were robust in both matched and unmatched samples, and when incorporating demographic
variables in a multifeatured model). Model interpretability analysis using occlusion sensitivity evidenced core
pathophysiological regions for each disease (mainly the hippocampus in AD, and the insula in bvFTD)
demonstrating biological specificity and plausibility.

Interpretation The generalisable approach outlined here could be used in the future to aid clinician decision-making
in diverse samples.

Funding The specific funding of this article is provided in the acknowledgements section.

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction
In the global South, dementia prevalence is expected to
increase rapidly in the next decades.1 Although patterns
of regional brain atrophy can characterise
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neurodegenerative conditions such as frontotemporal
dementia (FTD)2,3 and Alzheimer’s disease (AD),4,5

multiple challenges hinder the implementation of
massive, scalable, generalisable and automatic
d Adolfo Ibáñez, Santiago, Chile.

1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:agustin.ibanez@gbhi.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2023.104540&domain=pdf
https://doi.org/10.1016/j.ebiom.2023.104540
https://doi.org/10.1016/j.ebiom.2023.104540
https://doi.org/10.1016/j.ebiom.2023.104540
www.thelancet.com/digital-health


Research in context

Evidence before this study
The authors reviewed the literature using traditional (e.g.,
PubMed) sources. While neurodegenerative disease status can
be predicted from standardised neuroimaging data (MRI), the
literature shows that lower quality scanners, non-harmonised
processing pipelines, demographic, and region-specific sample
heterogeneities induce biased results tempering generalisation.

Added value of this study
A raw-data based, automatic computer vision classifier using
deep learning neural networks yielded reproducible and
generalisable results across highly heterogeneous MRI testing
databases of Alzheimer’s disease, behavioural variant

frontotemporal dementia, and healthy controls. This
development led to a robust and interpretable classification
pipeline of dementia subtypes. The replicability analysis was
performed by testing the algorithm on diverse samples
including 3T neuroimaging from the Global North, 3T
neuroimaging data from Latin America, and routine 1.5T
clinical images.

Implications of all the available evidence
This study may prove critical for future scalability and
comparability across multiple global datasets, ultimately
leading to the development of new clinical decision-making
tools.
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assessments using neuroimaging data outside the global
North (and even within high income countries with
larger health disparities). These challenges are larger in
multicentre studies that include non-stereotypic sam-
ples (in terms of admixture, genetic, demographic,
magnetic resonance imaging (MRI) signals, or cultural
diversity), where computational models systematically
fail to provide generalisations.6 Latin American Coun-
tries (LACs) constitute non-stereotypic samples7–9 and
are also challenged by additional factors. In such regions
with increased prevalence forecasts, there are relatively
few qualified personnel (technicians and clinicians) due
to hiring costs and training unavailability.7,8 In addition,
current MRI guidelines and protocols are based on
research-quality 3 tesla (T) acquisitions, such as that
used in the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI)10 and the Neuroimaging in Frontotemporal
Dementia (NIFD/LONI).11 However, clinical neuro-
imaging access in LACs is usually restricted to 1.5T,
low-field MRI scanners, and heterogeneous recording
parameters,7,8 generating high sources of variability and
challenging current harmonisation procedures.12,13 In
non-research-oriented sites assessing non-stereotypic
populations, recruitment approaches tend to inade-
quately match for sociodemographic factors, increasing
the challenges in relation to usability.7,8 Protocols to
assess neuroimaging as a diagnostic tool for AD and
FTD outside of the global North must therefore account
for the aforementioned factors. To date, no previous
approach has addressed these challenges (see Table 1
for the multiple gaps in the literature) and generalised
findings to South vs North comparisons.

Recent developments in computer vision stemming
from the field of artificial intelligence provide an inno-
vative solution to circumvent limitations in data acqui-
sition and data heterogeneity. Deep learning-based
visual artificial neural networks are characterised by
flexibility in evaluating images without a priori expecta-
tions on conventional orientation, metric, or shape.22

Possible biases in the preprocessing pipeline selection
steps such as image filtering, segmentation, rotation,
and smoothing are eliminated because the input con-
sists of unprocessed (raw) data, from which the most
relevant features for automated classification of clinical
status23 are extracted. Computer-assisted diagnostic ap-
proaches have already proven successful in several de-
mentia domains,24,25 but there is a notable lack of results
on the utility of using unprocessed neuroimaging data
across diverse geographical regions and with non-
standardised recording parameters (Table 1). These
factors potentially bias the classification output,
impacting reproducibility and generalisation that is
crucially needed in global and clinical settings.

Here, we present a fully automatic pipeline for de-
mentia subtype characterisation (AD and FTD) for ste-
reotypic and non-stereotypic samples, assessing
heterogeneous demography and acquisition parameters
from 3 Tesla MRI raw data. This pipeline was tested on
out-of-sample raw data from non-stereotypical pop-
ulations with diverse MRI acquisition parameters,
including clinical 1.5 Tesla MRI acquisitions. As most of
the challenges in analysing neuroimaging data from
non-stereotypic samples have not been addressed
simultaneously in previous works, we summarise in
Table 1 the previous gaps being tackled in this report.
We collected raw online MRI datasets without specifi-
cation to acquisition parameter, with and without
demographic matching, to train DenseNet,26,27 a
state-of-the-art deep learning neural network.28 Since a
considerable number of samples is needed to obtain
robust results,29 we augmented the input MRI images
(3000 unmatched and 300 matched samples) ten times
to obtain 30,000 unmatched and 3000 matched samples
by employing several geometric transformations.30 After
testing the data from standardised 3T data from large
consortia, and with standardised 3T data from LACs, we
then tested the classification’s generalisation and
reproducibility among routine clinical 1.5T MRI images
from non-stereotypic populations in the scientific liter-
ature. As deep learning does not readily identify the
www.thelancet.com Vol 90 April, 2023
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Author Samples Methods Results Gaps addressed in this report

Odusami
et al. (2022)14

Healthy controls
(CN) = 25
Subjective memory
complaint (SCM) = 25
Early mild cognitive
impairment (EMCI) = 25
Late MCI = 25
MCI = 13
Alzheimer’s Disease
(AD) = 25

Concatenated extracted features
from MRI acquisitions using
ResNet18 and DenseNet121

98.86% accuracy, 98.94%
precision, and 98.89% recall in
multiclass classification

No assessment of non-stereotypical samples
Trained and tested with data from one source only (ADNI)
No data augmentation
No dementia subtype characterisation (all patients had the AD
spectrum)
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Razzak et al.
(2022)15

AD = 95
MCI = 138
CN = 146

PartialNet Models averaged 99% accuracy No assessment of non-stereotypical samples
Image preprocessing not fully automatic
Trained and tested with data from one source only (ADNI)
No dementia subtype characterisation (all patients had the AD
spectrum)
No model interpretability analysis
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Di Benedetto
et al.(2022)16

Database 1:
Behavioural-variant
frontotemporal
dementia (bvFTD) = 50
CN = 110
Database 2:
bvFTD = 29
CN = 24

Compared 3D CNN, vision
transformers, and logistic regression

Up to 90% AUC No assessment of non-stereotypical samples
Preprocessed MRI using CAT12 toolbox
No data augmentation
No model interpretability analysis
No dementia subtype characterisation (all patients were bvFTD)
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Hosseini-Asl
et al. (2018)17

MCI = 70
AD = 70
CN = 70

3D CNN autoencoder Up to 100% accuracy Trained and tested with data from one source only (ADNI)
Image preprocessing
No dementia subtype characterisation (all patients had the AD
spectrum)
No model interpretability analysis
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Qiu et al.
(2020)18

Database 1:
CN = 229 AD = 118
Database 2:
CN = 320 AD = 62
Database 3:
CN = 73 AD = 62
Database 4:
CN = 356 AD = 209

3D CNN AUC up to 0.996 No assessment of non-stereotypical samples
No data augmentation
Image preprocessing
No dementia subtype characterisation
All samples from high income country databases, no 1.5 Tesla testing
samples
Two databases were not demographically matched sample in age, sex,
and years of education to discard possible biases across groups
inflating classification accuracy

Amini et al.
(2021)19

Low MCI = 690
Mild MCI = 236
Moderate MCI = 67
Severe MCI = 7

Quantum Matched-Filter Technique
(QMFT) and CNN deep learning

Up to 96.7% accuracy No assessment of non-stereotypical samples
Trained and tested with data from one source only (ADNI)
Image preprocessing
No dementia subtype characterisation (all patients had the AD
spectrum)
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Zhang et al.
(2021)20

AD = 280
cMCI = 162 (MCI
converters)
ncMCI = 251 (MCI non-
converters)
CN = 275

Attentional CNN Up to 97.35% accuracy No assessment of non-stereotypical samples
Trained and tested with data from one source only (ADNI)
Image preprocessing
No dementia subtype characterisation (all patients had the AD
spectrum)
No model interpretability analysis
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Feng et al.
(2020)21

AD = 153
MCI = 157
CN = 159

3D-CNN Up to 99.1% accuracy No assessment of non-stereotypical samples
Trained and tested with data from one source only (ADNI)
No dementia subtype characterisation (all patients had the AD
spectrum)
No model interpretability analysis
No use of demographically matched sample in age, sex, and years of
education to discard possible biases across groups inflating
classification accuracy

Table 1: Literature review.
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main features involved in the classification, anatomical
signatures were unveiled via occlusion sensitivity.31 Our
approach systematically identified different regions
across heterogeneous testing samples, enhancing model
interpretability, and in doing so provided global North
vs South generalisations and biological insights on
shared brain anatomic differences across diverse
populations.

We advanced a mixed hypothesis- and data-driven
approach using traditional statistical approaches and
deep learning, respectively. First, we hypothesised that
the DenseNet binary classifications for bvFTD vs healthy
controls (HC), AD vs HC, and bvFTD vs AD would yield
high performance in the ADNI and NIFD/LONI data-
bases. Second, we predicted that the generalisation and
reproducibility across diverse LAC samples including (a)
3T and (b) 1.5T clinical image samples would be satis-
factory. Third, we anticipated that the occlusion sensi-
tivity analysis would confirm specific patterns of atrophy
that characterise AD and FTD. By testing these hy-
potheses, we aimed to assess the robustness of our
computer vision framework for characterising neuro-
degenerative diseases in non-harmonised data that
would be scalable and generalisable to non-stereotypic
and routine clinical settings.
Methods
Participants
The sample included 3000 MRI scans (n = 1000 in-
dividuals with bvFTD, n = 1000 individuals with AD, and
n = 1000 HC), without matching for demographic vari-
ables (i.e., age, sex, and education), referred onwards as
the unmatched sample (Table 2). We also included a
demographically matched sample of 100 individuals with
bvFTD, 100 with AD, and 100 HC, referred hereafter as
the matched sample (Table 2). The rationale behind
creating separate samples was to account for the effect of
possible demographic differences (i.e., sex, age, and ed-
ucation) that exist on average on patients with AD and
with bvFTD. We used random sampling in the un-
matched sample (n = 3000, before data augmentation)
and stratified random sampling to create the matched
sample (n = 300, before data augmentation, to control for
age, sex, and education). Unprocessed (raw) 3D structural
T1-weighted 3T MRIs were obtained from three online
databases (hereafter ONLINE), and a Latin America and
the Caribbean database comprising of 3T and 1.5T im-
ages (hereafter 3T LAC and 1.5T LAC, respectively). The
online database consisted of data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)32 (AD = 273 and
HC = 301), the Neuroimaging in Frontotemporal De-
mentia (NIFD/LONI)11 (bvFTD = 362 and HC = 124), and
the UNITED Consortium33 (bvFTD = 538, AD = 627, and
HC = 475). The LAC sample included populations that
are underrepresented in the scientific literature and was
obtained from the Multi-Partner Consortium to Expand
Dementia Research in Latin America (ReDLat).34–38 The
LAC dataset comprised of 3T images (bvFTD = 50,
AD = 50, and HC = 50) and 1.5 Tesla images from
routine clinical assessment (bvFTD = 50, AD = 50, and
HC = 50). See Supplementary Data 1 for image acquisi-
tion parameter details.

Across samples, clinical diagnoses were established by
experts in dementia through an extensive neurological
and neuropsychiatric examination comprising semi-
structured interviews and standardised assessments,
with current criteria for probable bvFTD,39 and NINCDS-
ADRDA clinical criteria for AD40 (See Supplementary
Data 2 for details). Patients did not present any
vascular, psychiatric, or other neurological disorders. The
inclusion of healthy subjects required confirmation of
normal cognitive function, the absence of any disease,
and a brain MRI free of lesions or significant white
matter/atrophy changes. The respective IRB of each
institution that contributed images to this study approved
the acquisitions, and all the participants signed a consent
form following the declaration of Helsinki. The methods
were performed in accordance with relevant guidelines
and regulations and approved by the committee of the
ReDLat Multi-Partner Consortium members.34,35

Deep learning methods
Dataset split
The Deep Learning pipeline input were raw (i.e., with
no preprocessing steps), 3D structural T1-weighted im-
ages of the unmatched sample and the matched sample
from individuals with bvFTD, those with AD, and HC
(Fig. 1A). Following best practices in deep learning,41 we
split the dataset into 80% of the data for training and
validation (3T images from the ONLINE database,
bvFTD = 800, AD = 800, and HC = 800) and the 20% of
the data to create three independent testing datasets: 3T
ONLINE (bvFTD = 100, AD = 100, and HC = 100), 3T
LAC (bvFTD = 50, AD = 50, and HC = 50), and 1.5T LAC
(bvFTD = 50, AD = 50, and HC = 50). During training
and validation in 80% of the data, we used k-fold (k = 5)
cross validation (see Supplementary Data 3 for model
training details). We intentionally created the full
training set with the ONLINE dataset to evaluate the
extent to which this method could generalise to LAC 3T
and LAC 1.5T samples.

Data preparation and augmentation
Having the raw data as input, we augmented the sample
size to increase model performance by training the
models with more samples. One of the strengths of
Deep Learning is the automatic feature extraction from
raw data, increasing the method’s flexibility and
robustness that allows it to outperform traditional ma-
chine learning methods in biology and medicine appli-
cations.42 However, this advantage comes at a cost of
requiring larger datasets of diverse examples to develop
robust and flexible networks. Moreover, standard brain
www.thelancet.com Vol 90 April, 2023
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Variable HCs
US n = 1000
MS n = 100

bvFTD
US n = 1000
MS n = 100

AD
US n = 1000
MS n = 100

Statistics (all groups) Post-hoc comparisons

Groups p-value

Sex (F:M) US 477:523 464:536 561:439 χ2 = 22.17, p < 0.05a bvFTD-AD 0.002b

HCs-bvFTD n.sb

HCs-AD 0.001b

MS 48:52 50:50 53:47 χ2 = 0.51, p = 0.77a bvFTD-AD n.sb

HCs-bvFTD n.sb

HCs-AD n.sb

Age (years) US 72.14 (8.24) 67.85 (6.35) 78.12 (7.35) F = 3.14, p = 0.03a, ηp2 = 0.09 bvFTD-AD 0.02c

HCs-bvFTD n.sc

HCs-AD 0.009c

MS 73.25 (9.32) 68.96 (11.63) 75.51 (8.25) F = 2.61, p = 0.07a, ηp2 = 0.06 bvFTD-AD n.sc

HCs-bvFTD n.sc

HCs-AD n.sc

Years of education US 16.13 (4.75) 14.96 (4.29) 13.54 (3.89) F = 2.44, p = 0.07a, ηp2 = 0.05 bvFTD-AD n.sc

HCs-bvFTD n.sc

HCs-AD n.sc

MS 15.31 (5.35) 14.75 (3.12) 13.09 (4.51) F = 3.24, p = 0.08a, ηp2 = 0.07 bvFTD-AD n.sc

HCs-bvFTD n.sc

HCs-AD n.sc

Results are presented as mean (SD). Demographic data was assessed through ANOVAs –except for sex, which was analyzed via Pearson’s chi-squared (χ2) test. Effects sizes were
calculated through partial eta squared (ηp2). AD: Alzheimer’s disease, bvFTD: behavioural variant of fronto-temporal dementia, HCs: healthy controls, MS: Matched sample, US:
Unmatched sample. ap-values calculated via independent measures ANOVA. bp-values calculated via chi-squared test (χ2). cp-values calculated via Tukey’s range test.

Table 2: Demographic statistical results for the unmatched and matched samples.
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disorders association studies need the order of thousands
of participants to obtain reproducible results.29 To bridge
this gap, we employed data augmentation30 to increase
the number of samples of each dataset 10 times by
employing 4 different transformations. For this purpose,
we applied random brain volume rotations (minimum
degree = 0◦, maximum = 180◦) and brain volume flipping
to increase input variability, Gaussian noise (mean = 0.0,
SD = 0.1) incorporation to simulate low-quality acquisi-
tions, and image zoom (1× to 1.5×) to focus on different
brain areas each time. Employing this data augmentation
process, our sample size increased to a total of 30,000
brain images for the unmatched sample and 3000 brain
images for the matched sample. Finally, to normalise the
neural network inputs we resized the images (Fig. 1B).

Deep neural network training
We trained three separate deep learning neural networks
with only unprocessed MRI data as the input, one for the
bvFTD vs HC classification, another for the AD vs HC
classification, and a final for the bvFTD vs AD classifi-
cation. The deep learning neural network employed was a
DenseNet26 (121 architecture) adapted for 3D inputs. The
DenseNet is a state-of-the-art deep learning convolutional
neural network (CNN) employed in computer vision
tasks aided by artificial intelligence. In this network ar-
chitecture, each layer is connected to every other layer in
a feed-forward fashion, producing networks that are
www.thelancet.com Vol 90 April, 2023
substantially deeper, more accurate, and more efficient to
train (Fig. 1C for the DenseNet diagram). See
Supplementary Data 3 for neural network architecture
details and Table S2 for model training parameters.

Multifeatured deep neural network training and
sociodemographic control
To evaluate the importance of the demographic vari-
ables (i.e., sex, age, and education) in the classifications
corresponding to the unmatched sample, we retrained
the three neural networks (one for each binary classifi-
cations) and incorporated these demographic variables
as new features. See Supplementary Data 4 for multi-
featured neural network architecture details.

Ethics
The respective IRB of each institution that contributed
images to this study approved the acquisitions, and all
the participants signed a consent form following the
declaration of Helsinki. The methods were performed
in accordance with relevant guidelines and regulations
and approved by the committee of the ReDLat Multi-
Partner Consortium members.34,35 The ADNI and
LONI data acquisition was conducted according to Good
Clinical Practice guidelines, US 21CFR Part 50– Pro-
tection of Human Subjects, and Part 56 – Institutional
Review Boards (IRBs)/Research Ethics Boards (REBs),
and pursuant to state and federal HIPAA regulations.
5
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Fig. 1: Deep Learning pipeline. (A) Number of raw MRI datasets employed in the analysis before data augmentation, with and without
matching demographic variables (sex, age, and education) for the people with bvFTD, AD and the HC. (B) Data preparation and augmentation
pipeline consisting of random volume rotations, random flipping, Gaussian noise addition, volume scaling and enhancing by a zoom trans-
formation. This set of augmentations increased the sample size by a factor of 10. (C) 3D DenseNet network architecture consisting of a
sequence of dense blocks and transition layers consisting of a Batch Normalization (BN), a rectified linear unit (ReLU), and a convolution
transformation, ending in a prediction layer to produce the output. (D) Model evaluation interpretation, with the performance metrics
consisting of the ROC curve and an AUC report, a radar plot showing the accuracy, sensitivity, specificity, precision, recall, and F1 metrics. An
occlusion sensitivity analysis to obtain the most relevant parts of the images for the classification, and a test subsample variability analysis to
assess sample heterogeneity. AD: Alzheimer’s disease; BvFTD: behavioral-variant frontotemporal dementia; HC: healthy controls.
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The UNITED consortium data had the approval of each
IRB for the acquisitions and followed the declaration of
Helsinki for participant consent. The informed consent
of all participants was obtained.

Statistics
Sample size determination on dataset split in machine
learning followed best practices.41 To obtain unbiased
classification performance metrics irrespective of dataset
imbalance we employed several estimators, namely the
area under the curve (AUC) of the ROC curve, accuracy,
sensitivity, specificity, precision, recall and F1. We ob-
tained the confidence intervals by bootstrapping, using
random subsamples with replacement on 5000 iterations.
To assess statistical validation of our classification results,
we assessed the performance by employing nonpara-
metric permutation tests with sample label randomiza-
tion.43 This allowed to assess the significance of results
(FDR corrected) against a null distribution, and compare
the ROC curves of different models being evaluated in
the same testing dataset each time.44 The equality of the
curve is tested at all operating points, and a reference
distribution is generated by permuting the pooled ranks
of the test scores for each classification. This allowed to
statistically assess performance of our models against
classification by chance, when training with a matched or
an unmatched sample, when testing in different datasets,
and when considering or not demographic variables in
our unimodal vs multifeatured models. To interpret our
model outputs, we ran occlusion sensitivity analyses.31

The occlusion sensitivity analysis is a technique in con-
volutional neural networks employed to understand what
parts of an image are more relevant for deciding a clas-
sification output (Fig. 1D). See Supplementary Data 5 for
model interpretation details. All neural network pipe-
lines, including data augmentation and occlusion sensi-
tivity analysis, were developed using the PyTorch-based
API called Medical Open Network for Artificial Intelli-
gence (MONAI).45 Data can be made available upon
request on a case-by-case basis as allowed by the legisla-
tion and ethical approvals for a specific project.

Role of funders
The Funders did not have any role in study design, data
collection, data analyses, interpretation, or writing of the
report. No author has been paid to write this article by a
pharmaceutical company or other agency. All authors
were not precluded from accessing data in the study,
and they accept responsibility to submit for publication.
Results
High classification rate and generalisation in the
unmatched sample dataset
The results using the unmatched sample yielded a
robust classification of bvFTD, AD and controls in both
3T dataset subsamples. The scores were highest in the
www.thelancet.com Vol 90 April, 2023
3T ONLINE testing dataset for the bvFTD vs HC clas-
sification (AUC: 0.94 ± 0.04 (p-value = 0.005 [permuta-
tion test, FDR corrected]); accuracy: 95% ± 1%;
sensitivity: 94 ± 2%; specificity: 95% ± 1%; precision:
94% ± 3%; recall: 95% ± 2%; and F1: 94 ± 2%), for the
AD vs HC classification (AUC: 0.95 ± 0.02
(p-value = 0.004 [permutation test, FDR corrected]); ac-
curacy: 94% ± 2%, sensitivity: 96% ± 1%; specificity:
92% ± 2%; precision: 95% ± 2%; recall: 94% ± 1%; and
F1: 94% ± 2%), and for the bvFTD vs AD classification
(AUC: 0.90 ± 0.01 (p-value = 0.007 [permutation test,
FDR corrected]); accuracy: 92% ± 1%; sensitivity:
91% ± 2%; specificity: 93% ± 2%; precision: 89% ± 1%;
recall: 90% ± 1%; and F1: 89% ± 1%) (Fig. 2, first row).

The 3T LAC testing dataset followed the ranking of
accuracy, yielding good scores for the bvFTD vs HC
classification (AUC: 0.90 ± 0.02 (p-value = 0.007 [per-
mutation test, FDR corrected]); accuracy: 91% ± 2%,
sensitivity: 91% ± 1%; specificity: 92% ± 2%; precision:
91% ± 1%; recall: 89% ± 2%; and F1: 90% ± 1%), for the
AD vs HC classification, AUC: 0.88 ± 0.02 (p-
value = 0.009 [permutation test, FDR corrected]); accu-
racy: 90% ± 2%, sensitivity: 89% ± 2%; specificity:
92% ± 2%; precision: 82% ± 3%; recall: 88% ± 1%; and
F1: 85% ± 2%), and for the bvFTD vs AD classification
(AUC: 0.82 ± 0.02 (p-value = 0.019 [permutation test,
FDR corrected]); accuracy: 93% ± 2%, sensitivity:
93% ± 1%; specificity: 94% ± 1%; precision: 94% ± 1%;
recall: 95% ± 1%; and F1: 94% ± 1%) (Fig. 2, second
row).

Lastly, the 1.5T LAC testing dataset presented
reduced but still relevant classification for the bvFTD vs
HC classification (AUC: 0.78 ± 0.03 (p-value = 0.031
[permutation test, FDR corrected]); accuracy: 80% ± 1%,
sensitivity: 79% ± 2%; specificity: 81% ± 2%; precision:
78% ± 1%; recall: 79% ± 2%; and F1: 78% ± 2%), for the
AD vs HC classification (AUC: 0.79 ± 0.02
(p-value = 0.027 [permutation test, FDR corrected]); ac-
curacy: 77% ± 2%, sensitivity: 77% ± 1%; specificity:
78% ± 2%; precision: 81% ± 1%; recall: 80% ± 2%; and
F1: 81% ± 2%), and for the bvFTD vs AD classification
(AUC: 0.77 ± 0.04 (p-value = 0.035 [permutation test,
FDR corrected]); accuracy: 75% ± 2%, sensitivity:
73% ± 1%; specificity: 77% ± 2%; precision: 79% ± 1%;
recall: 82% ± 2%; and F1: 81% ± 1%) (Fig. 2, third row).

Occlusion sensitivity identifies critical brain regions
in AD and bvFTD
The occlusion sensitivity analysis identified the most
relevant brain areas for classifying each subject in the
DenseNet. We statistically compared occlusion sensi-
tivity maps among subject groups for each classification
pair. For the bvFTD vs HC comparison, there were two
significant clusters (α = 0.05, extent threshold 50, FDR
corrected) with peaks located on the bilateral ventral
anterior insula areas at MNI coordinates (−46, 4, −9) for
the left hemisphere and (45, 4, −13) for the right
7
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Fig. 2: ROC curves and radar plots for the unmatched sample. (A) ROC curves AUC for the bvFTD vs HC, AD vs HC, and bvFTD vs AD
classification for the 3T ONLINE, 3T LAC, and 1.5T LAC datasets. First row: In the 3T ONLINE testing dataset, we obtained an AUC of 0.94 (p-
value = 0.005 [permutation test, FDR corrected]), for the bvFTD vs HC classification, an AUC of 0.95 (p-value = 0.004 [permutation test, FDR
corrected]) for the AD vs HC classification, and 0.90 (p-value = 0.007 [permutation test, FDR corrected]) for the bvFTD vs AD classification.
Second row: In the 3T LAC testing dataset, we obtained an AUC of 0.90 (p-value = 0.007 [permutation test, FDR corrected]) for the bvFTD vs
HC classification, an AUC of 0.88 (p-value = 0.009 [permutation test, FDR corrected]) for the AD vs HC classification, and 0.82 (p-value = 0.019
[permutation test, FDR corrected]) for the bvFTD vs AD classification. Third row: Lastly, in the 1.5T LAC testing dataset, we obtained an AUC of
0.78 (p-value = 0.031 [permutation test, FDR corrected]) for the bvFTD vs HC classification, an AUC of 0.79 (p-value = 0.027 [permutation test,
FDR corrected]) for the AD vs HC classification, and 0.77 (p-value = 0.035 [permutation test, FDR corrected]) for the bvFTD vs AD classification.
(B) Radar plots for the accuracy, sensitivity, specificity, precision, and recall performance metrics including each binary classification results. First
row 3T ONLINE, second row 3T LAC, and third row 1.5T LAC. AD: Alzheimer’s disease, AUC: Area Under the Curve, bvFTD: behavioral variant of
fronto-temporal dementia, HCs: healthy controls, Sens: Sensitivity, Spec: Specificity. Prec: Precision. Sample size: (AD, n = 1000), (bvFTD,
n = 1000), and (HC, n = 1000).
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hemisphere (Fig. 3A, first column). With respect to the
AD vs HC comparison, we obtained significant clusters
on bilateral hippocampus with peaks located at
(−33, −19, −14) for the left hemisphere and
(31, −21, −18) for the right hemisphere (Fig. 3A, second
column). Finally, for the bvFTD vs AD comparison, the
DenseNet identified both bilateral ventral anterior insula
and both bilateral hippocampal areas (Fig. 3A, third
column). The MNI coordinates of the peaks for the
ventral anterior insula were (−44, 4, −9) for the left
hemisphere and (46, 4, −14) for the right hemisphere,
and for the hippocampus, (−33, −19, −15) for the left
hemisphere and (31, −20, −19) for the right hemisphere.

To evaluate the test subsample heterogeneity on the
three databases we plotted the histograms showing the
z-score distribution of the maximum peaks obtained
from the individual occlusion sensitivity maps of each
sample contained within the significant group compar-
ison clusters. We obtained less variability with higher
mean peak value for the 3T ONLINE sample for the
www.thelancet.com Vol 90 April, 2023
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Fig. 3: Model interpretation for the unmatched sample. (A) Occlusion sensitivity analysis by normalizing each subject into MNI space and
then averaging the results for bvFTD vs HC, AD vs HC, and bvFTD vs AD in the three testing samples (3T ONLINE, 3T LAC, and 1.5 LAC). For
bvFTD vs HC, the DenseNet based its decision focusing on bilateral ventral anterior insula areas (first column). While for the AD vs HC
comparison, the most relevant areas for the DenseNet bilateral hippocampal areas (second column). Finally, for the bvFTD vs AD comparison,
the DenseNet looked on both ventral anterior insula and hippocampal areas (third column). The results were consistent across testing samples.
(B) Test subsample variability analysis for the three databases and for the individual occlusion sensitivity maps of each subject, showing peak
value dispersion to look for sample heterogeneity. AD: Alzheimer’s Disease, bvFTD: behavioral-variant Frontotemporal Dementia, HC: Healthy
controls. Sample size: (AD, n = 1000), (bvFTD, n = 1000), and (HC, n = 1000).

Articles
three subject group comparisons, followed by a distri-
bution with a lower mean peak value for the 3T LAC
sample for the three subject group comparisons, and
finally, a wider distribution with lower mean peak value
for the 1.5 LAC sample for the three subject group
comparisons. However, the differences in distribution
variance were not statistically significant (See
Supplementary Data 6 and Fig. 3B for details).
www.thelancet.com Vol 90 April, 2023
Replication approach in the matched sample
dataset
When the DenseNet was trained with the matched
sample dataset, a robust classification was also obtained
in both 3T dataset test subsamples, and with reduced
performance (but similar to the unmatched sample)
metrics for the 1.5T subsample. Moreover, the occlusion
sensitivity analysis replicated the same results on the
9
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matched sample. See Supplementary Data 7 for details.
Furthermore, we checked the classification performance
on an additional testing subsample having negligible
age differences between groups. The change in perfor-
mance was also not significant (p > 0.05 [AUC ROC
difference test]), confirming that the model focused on
image features unrelated with age differences
(Supplementary Data 8).

Multi-feature results incorporating
sociodemographic data
Lastly, we trained a multi-feature model incorporating
sociodemographic data on the unmatched sample. This
model yielded high classification results overall on each
test subsample dataset (Table 3 and Fig. 4 for details).
Differences in classification performance between the
multifeatured model and the unimodal unmatched
counterpart were not significant (Supplementary Data
9), suggesting that sociodemographic information,
although useful, is only a minor contributor for the
classification accuracy.
Discussion
We developed a successful computer-vision-based
pipeline for dementia subtype characterisation based
on unprocessed MRI imaging across diverse samples
and scanners. In contrast with previous works (Table 1),
we used raw MRI data, assessed of non-stereotypical
samples, trained the deep learning with different data-
bases (including low-field scanners), used data
augmentation to increase our sample size, classified
dementia subtypes instead of just comparing dementia
against healthy controls, evaluated the effects of
demographic variables that may inflate classification
performance, and used occlusion sensitivity for
providing model interpretability. The results, combining
hypothesis and data-driven approaches quantified the
effectiveness of the DenseNet neural network in classi-
fying bvFTD vs HC, AD vs HC, and bvFTD vs AD across
heterogeneous testing datasets. Importantly, the model
Sample Classification AUC Accuracy (%) Sensitiv

3T ONLINE bvFTD vs HC 0.95 ± 0.03 95 ± 2 96 ± 2

AD vs HC 0.95 ± 0.02 94 ± 1 93 ± 3

bvFTD vs AD 0.90 ± 0.02 91 ± 3 92 ± 2

3T LAC bvFTD vs HC 0.90 ± 0.04 90 ± 2 91 ± 2

AD vs HC 0.89 ± 0.03 90 ± 1 90 ± 2

bvFTD vs AD 0.84 ± 0.03 85 ± 2 85 ± 1

1.5 LAC bvFTD vs HC 0.80 ± 0.02 81 ± 2 81 ± 2

AD vs HC 0.80 ± 0.03 80 ± 2 82 ± 1

bvFTD vs AD 0.79 ± 0.05 81 ± 2 79 ± 2

AD: Alzheimer’s disease, bvFTD: behavioural variant of fronto-temporal dementia, HC:

Table 3: Multifeatured performance metrics.
generalised to classify images from geographically
diverse settings and even to routine clinical imaging
with low-field MRI scanner acquisitions. Our approach
proved robust to potential confounding of demographic
variables, by constructing separate datasets (i.e.,
matched and unmatched samples) and also by incor-
porating the demographic variables in the multifeatured
model. Finally, the occlusion sensitivity analysis
confirmed (a) the involvement of critical anatomic re-
gions for each disease, and (b) the identification of same
regions across models. Both results are biologically
plausible and demonstrate generalisation of the classi-
fication results. Overall, these set of findings highlight
the potential future application of this pipeline in
massive, scalable, automatic, and non-harmonised set-
tings for the clinical decision-making process – partic-
ularly in the global South where dementia rates will
increase rapidly.

A unique aspect of present result is the power to
generalise the classification to underrepresented pop-
ulations and to lower-quality clinical images. The neuro-
pathology of neurodegenerative disorders in high income
countries may manifest differently than in other regions
due to varied social, cultural, and regional contexts.46,47

The genetic,48 cognitive,49 and brain structural and func-
tional network variability,50,51 together with socioeconomic
disparities can induce heterogeneous presentations47 of
AD and bvFTD that challenging global approaches to
classification. Moreover, the neuroimaging tools
employed in LAC are currently limited due to poor MR
protocol harmonisation and employment of low-field
scanners for routine clinical assessments.52 Against this
background, the generalisation and reproducibility across
diverse LAC samples including 3T (research-oriented)
and 1.5T (clinical-oriented) scans as testing datasets
produced adequate results differentiating subject groups.
While the performance of the DenseNet was lower in the
LAC samples compared to the HIC initiatives, such as
ADNI and NIFD/LONI, it was still adequate in terms of
predictive values and considering the high heterogeneity
in the sample evidenced by our test subsample variability
ity (%) Specificity (%) Precision (%) Recall (%) F1 (%)

95 ± 3; 94 ± 2 93 ± 2 93 ± 2

95 ± 2 93 ± 2 94 ± 3 94 ± 1

90 ± 3 91 ± 2 92 ± 3 91 ± 2

90 ± 2 91 ± 2 92 ± 3 91 ± 2

89 ± 2 88 ± 2 90 ± 1 89 ± 2

86 ± 3 88 ± 2 86 ± 2 87 ± 2

82 ± 2 79 ± 1 82 ± 2 81 ± 2

79 ± 2 78 ± 1 83 ± 1 81 ± 2

82 ± 2 81 ± 1 79 ± 3 80 ± 2

Healthy control.

www.thelancet.com Vol 90 April, 2023

www.thelancet.com/digital-health


Fig. 4: ROC curves and radar plots for the unmatched sample multifeatured model. (A) AUC results the bvFTD vs HC, AD vs HC, and bvFTD
vs AD classification for the 3T ONLINE, 3T LAC, and 1.5T LAC datasets. First row: In the 3T ONLINE testing dataset, we obtained an AUC of 0.95
(p-value = 0.004 [permutation test, FDR corrected]) for the bvFTD vs HC classification, an AUC of 0.95 (p-value = 0.004 [permutation test, FDR
corrected]) for the AD vs HC classification, and 0.90 (p-value = 0.007 [permutation test, FDR corrected]) for the bvFTD vs AD classification.
Second row: In the 3T LAC testing dataset, we obtained an AUC of 0.80 (p-value = 0.024 [permutation test, FDR corrected]) for the bvFTD vs
HC classification, an AUC of 0.89 (p-value = 0.008 [permutation test, FDR corrected]) for the AD vs HC classification, and 0.84 (p-value = 0.012
[permutation test, FDR corrected]) for the bvFTD vs AD classification. Third row: Lastly, in the 1.5T LAC testing dataset, we obtained an AUC of
0.78 (p-value = 0.027 [permutation test, FDR corrected]) for the bvFTD vs HC classification, an AUC of 0.80 (p-value = 0.024 [permutation test,
FDR corrected]) for the AD vs HC classification, and 0.78 (p-value = 0.031 [permutation test, FDR corrected]) for the bvFTD vs AD classification.
(B) Radar plots for the accuracy, sensitivity, specificity, precision, and recall performance metrics including each binary classification results. First
row 3T ONLINE, second row 3T LAC, and third row 1.5T LAC. AD: Alzheimer’s disease, AUC: Area Under the Curve, bvFTD: behavioral variant of
fronto-temporal dementia, HCs: healthy controls, Prec: Precision, Sens: Sensitivity, Spec: Specificity. Sample size: (AD, n = 1000), (bvFTD,
n = 1000), and (HC, n = 1000).

Articles
analysis. Furthermore, it allowed to weigh the importance
of image quality in the quest for global diagnostic pro-
tocols. The test subsample variability analysis showed
higher results heterogeneity for the 1.5T LAC database,
followed by the 3T LAC, and lastly, the 3T ONLINE
database. Even if the classification rate was lower for
clinical images, the accuracy level was robust enough to
provide complementary probabilistic information to
assist with the clinical decision-making process. This
work features a deep neural network model bringing
www.thelancet.com Vol 90 April, 2023
reproducible and generalisable results across highly het-
erogeneous MRI testing databases. This study may prove
critical for future scalability and comparability across
multiple global datasets.

Demographic characteristics had little effect on
overall model performance, thus highlighting the neural
network’s capability to drive its outputs by focusing on
atrophy features alone across heterogenous datasets.
This was the case for both the unmatched sample
analysis and the replication testing approach with a
11
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demographically matched sample. The classification
performance in the smaller matched sample was slightly
lower but not statistically different from the larger un-
matched sample. Also, we assessed the performance of
the models on imbalanced testing datasets, to reflect real
world scenarios in which the prevalence of AD is higher
than the prevalence of bvFTD. Results were not affected
by sample imbalance (Supplementary Data 10). The
multi-feature model incorporating sociodemographic
data in the unmatched sample resulted in slightly
higher performance metrics, but again, not reaching
statistical significance in its differences with the unim-
odal counterpart. This is relevant for diagnostic pur-
poses, as real-world clinical data is often
demographically heterogeneous.

The present framework provides advantages to
overcome traditional limitations when training deep
neural networks.23,41 First, data augmentation enabled us
to increase the sample size by a factor of ten while
adding data variability that is much needed to train deep
learning models.29 By employing random geometric
transformations, we produced dataset inputs reproduc-
ing diverse acquisition parameters. By incorporating
Gaussian noise in some training samples, we mimicked
noise in low-field acquisitions. Thus, training with this
augmented dataset, a more flexible model was able to
handle heterogeneous testing datasets from LAC sam-
ples as well as 1.5T recordings. Second, unlike tradi-
tional deep learning black-box type models,42 occlusion
sensitivity provided insights on why the model was
producing its outputs, successfully identifying critical
brain hubs for bvFTD and AD pathophysiology in the
classification process. Finally, unlike a recent study in
dementia subtype characterisation based on raw MRI,53

we trained a multi-feature model by concatenating im-
age embeddings with demographic features. The per-
formance improvement in this more comprehensive
model was not statistically significant, showing that the
DenseNet was classifying the subject groups primarily
based on imaging features which are not driven by de-
mographics. An additional feature importance analysis
(Fig. S3) evidenced that in the AD vs bvFTD compari-
son, the demographic factors have a more salient effect,
although lower than the brain features. This is expected
since AD and bvFTD have important differences in
age,54,55 sex54,55 and years of education.54,56 All in all, these
pipelines and processes allowed to increase the perfor-
mance and interpretability.

The occlusion sensitivity analysis identified specific
patterns of atrophy that characterise AD and bvFTD.
These disease-specific regional peaks were observed
across different testing databases comprising heteroge-
neous populations, acquisition parameters, sample size,
and demographic matching. For the detection of people
with AD, the DenseNet mainly identified the left and
right hippocampus, consistent with several reported
source of evidence.4,57 When comparing AD variants, the
hippocampal atrophy is more systematic than neocor-
tical affectation which is dependent on AD subtype.4 The
hippocampus is a hub early compromised in AD due to
tau deposition, facilitating subsequent amyloid pathol-
ogy spread along the default mode network (DMN)58–60

(note that 60 is a preprint). Global intensity of tau-PET
in fact predicts the rate of subsequent atrophy.5 More-
over, direct associations exists between memory-specific
impairments occurring early in the disease and hippo-
campal atrophy.61 An ADNI-based MRI longitudinal
study evidenced hippocampal atrophy as the hallmark
signature of progression from mild cognitive impair-
ment (MCI) to AD.57 However, other studies have
questioned this finding,62,63 in which sample or pre-
processing heterogeneity may have affected the speci-
ficity of the results. In our work, results were tested in
different samples without using image preprocessing
and found reproducible atrophy patterns, although with
an expected lower accuracy in non-stereotypical samples
from Latin America. In contrast, for bvFTD the Den-
seNet highlighted the left and right ventral anterior
insula. This is a key structure affected in the early-stages
of frontotemporal degeneration,13,64–72 leading to im-
pairments in action self-control.73 In particular, a study
showed that the ventral anterior insula was specifically
affected in bvFTD, in contrast to the dorsal anterior
insula that is mostly affected in non-fluent/agrammatic
variant of primary progressive aphasia.74 The insula is a
critical functional75 and structural hub76 across
compromised networks in bvFTD.2,75,77 Graph theory
analysis in insular networks has shown a reduction in
global network degree and efficiency that predicts
behavioural deficits.78,79 Specific bvFTD deficits in social-
emotional abilities has been linked to the insular hub in
the salience80 and the allostatic interoceptive net-
works.2,75,77 The present results, pointing to hippocam-
pus (in AD) and insula (in bvFTD), were completely
data-driven, without any a-priori region selection, high-
lighting the method’s robustness to identify core
disease-specific pathophysiological regions, and open a
new agenda to test this approach in other neurodegen-
erative and neurological conditions. Future assessments
may help to identify contributions at the individual level,
given that the approach can help to provide personalised
probabilistic diagnosis by inputting new MRI scans into
the model.

Limitations and further assessments
Our work features some limitations and opens a new
agenda for further research. First, while the sample size
was larger than most of previous studies without
considering data augmentation,53,81–85 deep learning
models may need even larger amounts of data to further
test its generalizability at a more global scale. However,
the performance metrics obtained while training with
the matched sample (n = 100, without augmentation)
and unmatched samples (n = 1000, without
www.thelancet.com Vol 90 April, 2023
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augmentation) showed negligible differences. More-
over, results were replicated in different datasets with
very heterogenous settings, suggesting that the sample
size was robust enough to reproduce relevant patterns
across studies. Second, the subject-level classification
was made on two neurodegenerative conditions. Further
exploration of earlier stages (MCI in AD; prodromal in
FTD), cognitive decline and severity, as well other
neurodegenerative conditions will provide additional
challenging scenarios to test the framework. Third, the
multi-feature approach suggests that sociodemographic
differences (age, gender, and education), although rele-
vant, are not strong drivers of the classification, making
the approach disease-specific and generalisable to non-
matched databases. However, future studies should
include other related aspects as socioeconomic status,
social determinants of health, and ethnicity. Fourth, we
employed a standard DenseNet-121 architecture. Future
studies may explore architecture modifications to test
possible performance improvements. Fifth, although
tested samples here replicated similar results across
different databases, even more heterogeneous pop-
ulations may yield classificatory differences in which
additional model training would be necessary. Finally,
the future assessment of additional relevant imaging
signatures (fMRI, DTI, PET) combined with non-
imaging biomarkers (plasma, cognition, retina, EEG,
others) may be incorporated to create a multi-modal
deep learning approach.
Conclusions
A fully automatic deep learning framework was devel-
oped based on raw (unpreprocessed) MRI data and
tested on non-stereotypical, heterogeneous datasets to
test result generalisability. We employed datasets ac-
quired under different MRI fields and parameters, and
demographically matched (and unmatched) data to test
for possible biases that may affect model performance
in out-of-sample validation. Our method produced a
result that generalised across North vs South heteroge-
neous samples. The findings across different testing
databases highlight the robustness of the DenseNet and
underscores its potential as an architecture to be
employed in underrepresented, diverse, and clinical
settings, where costly biomarkers are unavailable.
Moreover, by employing model interpretability analysis
via occlusion sensitivity we confirmed the specific
anatomical structures differentiating the affectation in
AD and bvFTD. In the future, this approach may be
tested as a clinical decision support framework with the
aim of providing affordable and personalised dementia
assessments.
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